描述:罗素悖论的意义 1、尽管它们把这个看似很美好的世界无情地打破,但是这又何尝不是探索这个过程本身呢。我们能做的是 2、罗素和怀特海的这部大书顾名思义,是研究数学基础的。这
1、尽管它们把这个看似很美好的世界无情地打破,但是这又何尝不是探索这个过程本身呢。我们能做的是
2、罗素和怀特海的这部大书顾名思义,是研究数学基础的。这类研究有几个主要流派,比如以德国数学家希尔伯特(DavidHilbert)为代表的形式主义(Formalism)、以荷兰数学家布劳威尔(L.E.J.Brouwer)为代表的直觉主义(Intuitionism),等等。罗素和怀特海这部《数学原理》也属于一个著名流派,叫做逻辑主义(Logicism),主张数学可以约化为逻辑。《数学原理》不是逻辑主义的奠基之作,却是它的高峰。在《数学原理》中,数学大厦的一部分被从逻辑出发直接构筑了出来。罗素和怀特海对此深感自豪,在向皇家学会申请赞助的信里,特别强调了这部书的精确性(exactness)、推理的缜密性(particularityofreasoning)以及内容的完备性(completeness)。
3、鳄鱼对母亲说:“你说我会不会吃掉你的孩子?答对了,孩子还给你;答错了,我就吃了他。”
4、如果回答可以,那么上帝将会遇到一块他举不起来的石头,说明上帝不是万能的;如果说不可以,那也说明了上帝不是万能的。
5、那些年,罗素常到牛津附近一座跨越铁路的桥上去看火车,在情绪悲观时,看着一列列火车驶过,他有时会生出可怕的念头:也许明天干脆卧轨了结此生。不过这时候,使他悲观厌世的《数学原理》却又变成了让他活下去的动力,因为每当黎明来临,他又会重新燃起希望:活下去,“也许某一天能完成《数学原理》”。
6、于是老师准备起诉他,并告诉他说:“如果我胜诉,法官会判你付学费;如果我败诉,那么根据约定,你还是要付我学费。总之要付。”
7、诸如罗素悖论和芝诺悖论,它们的提出并非恶意,是由于实际上确实存在的问题需要解决和解释。
8、所以,管理现在不断地面临这些矛盾和这些悖论。因此,互联网思维也好,创新者的窘境也好,它提出的根本问题是:企业还要不要持续的改善管理?科学管理还有没有用?未来市场和企业谁代替谁?这个问题涉及到企业和市场的关系,让我们回到罗纳德·科斯提出的两个基本问题:“如果通过企业可以消除某些成本,那为什么还会有市场交易?”反之亦然,“如果价值体系能够决定资源分配,为什么需要企业来承担建立和运转这种行政机构的成本呢?
9、确定性。应该有一个算法,来确定每一个形式化的命题是真命题还是假命题。
10、B.Russell,ThePhilosophyofLogicalAtomism(OpenCourtPublishingCompany,1985).(罗素悖论的意义)。
11、我们假设时间旅行者的过去和现在存在因果联系,那么扰乱这种因果关系的祖父悖论看上去似乎是不可能实现的。(也就杜绝了人可以任意操纵命运的可能)但是,有许多假说绕开了这种悖论,比如有人说过去无法改变,祖父一定已经在孙子的谋杀中幸存下来(如前所说);还有种可能是时间旅行者开启/进入了另一条时间线或者平行宇宙什么的,而在这个世界,时间旅行者从未诞生过。
12、概括起来包括四个方面:第一个是基于数据和事实的理性分析和科学管理。按照“蓝血十杰”的管理哲学,事实都是可以度量的;不能够度量的事情就不是事实,最多是一种现象。第二个是建立了在计划、预算、流程和利润中心基础上的规范的管理控制系统。据说这次从中央到地方财政部门,都在大力推行的一件事情,就是管理会计,管理会计的重要性恰恰是在预算、计划流程和责任中心基础上建立起一套管理系统。第三个是重新定义了财务部门的功能,使之在传统的会计和融资功能基础上,承担起成本分析、利润分析、投资决策等现代管理会计的职责。第四个是客户导向和力求简单的产品开发策略。
13、但是,这一切并非没有代价,那代价就是推理的极度曲折和冗长。比方说,“1”这个小学数学第一课的内容在《数学原理》中直到第363页才被定义;1+1这个最简单的小学算术题直到第379页才有答案。比这种曲折和冗长更糟糕的,是《数学原理》虽然是逻辑主义的高峰,却在一定程度上背离了逻辑主义的初衷,即借助逻辑所具有的自明性(self-evidence)来构筑数学。在《数学原理》中,罗素和怀特海引进了几条不仅不自明,甚至未必能算逻辑的公理,比如无穷公理(axiomofinfinity)、选择公理(axiomofchoice),以及可化归性公理(axiomofreducibility)。这其中无穷公理和选择公理在集合论中也采用,倒还罢了,可化归性公理则完全是另类。《数学原理》的这一特点——尤其是可化归性公理——遭到了猛烈批评,批评者包括第一流的数学家、逻辑学家和哲学家,几乎是数学基础研究的一个明星阵容。
14、B.Russell,MyPhilosophicalDevelopment(SimonandSchuster,Inc.,1959).
15、所有对理发师悖论的解答都将目光限定在可能的集合类型上。罗素自己提出了一套“类型理论”,这套理论将语句分为不同级别:最低级别是关于个体的语句,第二层级别是关于个体集合的语句,以此类推。这种理论避免了包含所有集合但不包含自身的全集,因为两种语句属于不同类型——即不同级别。
16、其实,梅拉那部书是很大的,6卷9册5,000多页,恐怕是有史以来最大的科学史专著,照卡利马科斯的说法,罪是小不了的。倒是罗素的“谦虚”还稍有些道理,因为《西方的智慧》并不是他最大的书,他有一部大得多的书叫做《数学原理》(PrincipiaMathematica),3卷近2,000页,那才是“大罪”。不过那恐怕不是书之罪,而是书带给作者的罪——那部大书着实让作为主要作者的罗素受了“大罪”。
17、罗素悖论是由罗素发现的一个集合论悖论,其基本思想是:对于任意一个集合A,A要么是自身的元素,即A∈A;A要么不是自身的元素,即A∉A。根据康托尔集合论的概括原则,可将所有不是自身元素的集合构成一个集合S即S1={x:x∉x}。
18、但对这个看似合理的问题的回答却会陷入两难境地。如果s属于S,根据S的定义,s就不属于S;反之,如果s不属于S,同样根据定义,s就属于S。无论如何都是矛盾的。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。
19、引进世界先进管理体系要“削足适履”,先僵化、后优化
20、 这道像是奥数题的“填色问题”,至今无人能解决
21、作为生活必需品的水价值很低,奢侈品如钻石的价值却很高,但为什么水的价值比钻石低?
22、如果你乘坐时光机回到你祖父祖母相遇之前并杀死你的祖父会发生什么?
23、假设你路过一家理发店,标语上写着:“你给自己刮脸么?如果不是,请允许小店帮您刮脸!我只帮城里有所不自己刮脸的人刮脸,其他人一概不刮。”这个简单的介绍足够让你走进这家理发店了,但是接下来你发现了问题——理发师给自己刮脸么?如果他给自己刮脸,那么他就违反了只帮不自己刮脸的人刮脸的承诺,如果他不给自己刮脸,那么他必须给自己刮脸,因为他的承诺说他只帮不自己刮脸的人刮脸。两种假设都导致这句话说不通。
24、罗素构造了一个集合S:S由一切不属于自身的集合所组成。然后罗素问:s是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定集合,问是否属于它自己是有意义的。
25、 正版印度神药为何这么贵?研究半世纪,两夺世界第出了五位顶级医学奖
26、关于悖论,人们真的是充满了无穷无尽的好奇心和想象力。比如在空中永远能够灵活翻身脚着地的猫(高空坠落对猫咪依旧会造成伤害,不要尝试!不要尝试!不要尝试!),比如涂了黄油的面包永远是黄油那面着地。当然也有人把这个和涂了黄油的面包,永远是黄油的那一面先着地「巧妙」地结合了起来。
27、 为什么空调吹出的风有一股“空调味”?|No.111
28、相容性。运用这一套形式化和它的规则,不可能推导出矛盾。
29、看其结论附加,2=“教皇和罗素是1 个人”,并不能推出“罗素就是教皇”,而是推出“教
30、生日问题提出了一种可能性:随机挑选一组人,其中会有两人同天生日。用抽屉原理来计算,只要人群样本达到3存在两人同天生日的可能性就能达到100%(一年虽然只有365天,但是有366个生日,包括2月29日)。然而,如果只是达到99%的概率,只需要57个人;达到50%只需要23个人。这种结论的前提是一年中每天(除去2月29日)生日的概率相等。
31、罗素年轻时雄心勃勃,二十出头就立下宏愿,要写两个系列的“大书”:一个涵盖所有的科学领域;另一个涵盖所有的社会学领域。他并且畅想:一个系列将从抽象出发,逐渐向应用靠拢,另一个系列则从应用出发,逐渐向抽象靠拢,最终交融成一个巨无霸系列。罗素后来确实算得上著作等身,但年轻时的这个宏愿实在是远远超出了任何个人的能力,终其一生也未能实现,而只在某些局部领域中取得过局部成果。如果要在其中找出一个努力得最系统的,那恐怕是数学。
32、假设经济衰退,全社会所有人都选择把钱存进银行,社会总需求因此下降,社会总资产反而更少。
33、这位母亲细想片刻说到:我想你会吃掉我的孩子!
34、B.Russell,Autobiography(Routledge,1998).
35、1897年,25岁的罗素撰写了一本关于几何的书:《论几何的基础》(AnEssayontheFoundationsofGeometry),随后又开始构思一本有关数学基础的书:《数学的原理》(ThePrinciplesofMathematics)。这本中译名仅一字之差,英文名也有些相近的书是《数学原理》的前身。仿佛在预示《数学原理》将要让罗素受“罪”,《数学的原理》一起头就不顺利,几次努力都止于片断。这一局面直到1900年8月罗素在巴黎国际哲学大会(InternationalCongressofPhilosophy)上遇见意大利数学家皮亚诺(GiuseppePeano)才有了被他称为“智力生活转折点”(aturningpointinmyintellectuallife)的改变(注二)。
36、“我说的这句话是假话”,这是一句了不得的话,因为这句话无论怎样都无法获得一个正确的解释。如果说话的人说的是真话,那么这句话就不成立了,既然说的是真话,又怎么能说所说的这句话是假话呢?如果说话的人说的是假话,那么这句话所表明的意思就是说话人所说的是真话,明明说的是假话,又怎么能说这是真话呢?所以无论说话的人说的是真话还是假话,这句话都是矛盾的,是无解的。这就是说谎者悖论,当然,悖论总有被解释清楚的那一天,无数的科学家也在试图揭开说谎者悖论。
37、第一桩跟个人兴趣有关,起因于怀特海夫人伊夫林·怀特海(EvelynWhitehead),而且发生得很突然。怀特海夫人年轻时经常被类似心绞痛的病痛所折磨,1901年上半年的某一天,罗素亲眼目睹了怀特海夫人遭受剧烈病痛折磨的情形。那情形对罗素产生了极深的影响,他从怀特海夫人孤立无助的痛苦中,深切意识到了每个人的灵魂都处在难以忍受的孤独之中。这一意识——用他自己的话说——让他感觉到“脚下的大地忽然抽走了”,使他在短短五分钟的时间里“变成了一个完全不同的人”,由撰写《数学原理》所需要的一味追求精确和分析“涣散”为了对人生和社会哲学也有了浓厚兴趣(注五)。
38、(9)罗素和怀特海所强调的完备性从字面上讲,是涵盖范围很广阔这一意义上的完备性,但在涵盖范围之内,则如哥德尔之前几乎所有研究数学基础的其他人一样,默认了不存在无法证明的真命题这一意义上的完备性。这后一种完备性恰恰因为前一种完备性,即涵盖范围很广阔,而被哥德尔不完全性定理所颠覆。
39、不确定性时代企业的生存之道:用互联网降低企业的外部交易成本;用互联网和科学管理降低企业的内部交易成本。
40、他认为,实践中的个人学说包括两个方面:一方面,个人除了经过应有的法律程序以外,不应接受处罚;另一方面,应当有一个范围,在这中间个人的活动不受政府控制。这个范围包括言论自由、出版自由和宗教自由,它通常还包括经济上的经营自由。
41、关于数学基础,公理系统相容性的严谨证明,德国数学家希尔伯特曾经有过一个大胆的想法。他提出了希尔伯特计划,希望为全部的数学提供一个安全的理论基础。
42、当时的情况是,德国数学家康托尔创立了著名的集合论,这一成果也为数学界接受,并且获得了广泛而高度的赞誉。
43、当前主流的解悖方案是蒯因的方案。蒯因的论证过程:假设村子里有如此一位理发师。如果他要给自己理发,根据他的规则,他不给自己理发。如果他不给自己理发,根据他的规则,他要给自己理发。矛盾。因此假设不成立,如此一位理发师不存在。